Find the general solution of the differential equation
Question: Find the general solution of the differential equation $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$ Solution: $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$ $\Rightarrow \frac{d y}{d x}=-\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$ $\Rightarrow \frac{d y}{\sqrt{1-y^{2}}}=\frac{-d x}{\sqrt{1-x^{2}}}$ Integrating both sides, we get: $\sin ^{-1} y=-\sin ^{-1} x+\mathrm{C}$ $\Rightarrow \sin ^{-1} x+\sin ^{-1} y=\mathrm{C}$...
Read More →The areas of two similar triangles are 100 cm2 and 49 cm2 respectively.
Question: The areas of two similar triangles are $100 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the bigger triangle is $5 \mathrm{~cm}$, find the corresponding altitude of the other. Solution: Given: The area of two similar triangles is $100 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of bigger triangle is $5 \mathrm{~cm}$ To find: their corresponding altitude of other triangle We know that the ratio of areas of two similar triangl...
Read More →In ∆ABC, P divides the side AB such that AP : PB = 1 : 2. Q is a point in AC such that PQ || BC.
Question: In ∆ABC, P divides the side AB such that AP : PB = 1 : 2. Q is a point in AC such that PQ || BC. Find the ratio of the areas of ∆APQ and trapezium BPQC. Solution: GIVEN: In ΔABC, P divides the side AB such that AP : PB = 1 : 2, Q is a point on AC such that PQ || BC. TO FIND: The ratio of the areas of ΔAPQ and the trapezium BPQC. In ΔAPQ and ΔABC APQ=BCorrespondinganglesPAQ=BACCommonSo,∆APQ~∆ABC (AA Similarity) We know that the ratio of areas of two similar triangles is equal to the rat...
Read More →Question: $\frac{\cos 10^{\circ}+\sin 10^{\circ}}{\cos 10^{\circ}-\sin 10^{\circ}}=$ (a) tan 55 (b) cot 55 (c) tan 35 (d) cot 35 Solution: (a) tan 55 $\frac{\cos 10^{\circ}+\sin 10^{\circ}}{\cos 10^{\circ}-\sin 10^{\circ}}$ $=\frac{1+\tan 10^{\circ}}{1-\tan 10^{\circ}} \quad\left[\right.$ Dividing the numerator and denominator by $\left.\cos 10^{\circ}\right]$ $=\frac{\tan 45^{\circ}+\tan 10^{\circ}}{1-\tan 45^{\circ} \times \tan 10^{\circ}}$ $=\tan \left(45^{\circ}+10^{\circ}\right) \quad\left[...
Read More →Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
Question: Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes. Solution: The equation of a circle in the first quadrant with centre (a,a) and radius (a)which touches the coordinate axes is: $(x-a)^{2}+(y-a)^{2}=a^{2}$ ...(1) Differentiating equation (1) with respect tox, we get: $2(x-a)+2(y-a) \frac{d y}{d x}=0$ $\Rightarrow(x-a)+(y-a) y^{\prime}=0$ $\Rightarrow x-a+y y^{\prime}-a y^{\prime}=0$ $\Rightarrow x+y y^{\prime}-a\left(1+y^{\pri...
Read More →ABCD is a trapezium in which AB || CD. The diagonals AC and BD intersect at O. Prove that :
Question: ABCD is a trapezium in which AB || CD. The diagonals AC and BD intersect at O. Prove that :(i) $\triangle \mathrm{AOB} \sim \Delta \mathrm{COD}$ (ii) If $\mathrm{OA}=6 \mathrm{~cm}, \mathrm{OC}=8 \mathrm{~cm}$, Find: (a)Area∆AOBArea∆COD(b)Area∆AODArea∆COD Solution: Given: ABCD is a trapezium in which AB || CD. The diagonals AC and BD intersect at O. To prove: (i) $\triangle \mathrm{AOB} \sim \Delta \mathrm{COD}$ (ii) If $\mathrm{OA}=6 \mathrm{~cm}, \mathrm{OC}=8 \mathrm{~cm}$ To find: ...
Read More →If cot (α + β) = 0,
Question: If cot ( + ) = 0, sin ( + 2) is equal to (a) sin (b) cos 2 (c) cos (d) sin 2 Solution: (a) sin Given: $\cot (\alpha+\beta)=0$ $\Rightarrow \frac{\cos (\alpha+\beta)}{\sin (\alpha+\beta)}=0$ $\Rightarrow \cos (\alpha+\beta)=0$ $\Rightarrow \alpha+\beta=\frac{\pi}{2}$ Therefore, $\sin (\alpha+2 \beta)=\sin (\alpha+\alpha+\beta)$ =sin...
Read More →If cot (α + β) = 0,
Question: If cot ( + ) = 0, sin ( + 2) is equal to (a) sin (b) cos 2 (c) cos (d) sin 2 Solution: (a) sin Given: $\cot (\alpha+\beta)=0$ $\Rightarrow \frac{\cos (\alpha+\beta)}{\sin (\alpha+\beta)}=0$ $\Rightarrow \cos (\alpha+\beta)=0$ $\Rightarrow \alpha+\beta=\frac{\pi}{2}$ Therefore, $\sin (\alpha+2 \beta)=\sin (\alpha+\alpha+\beta)$ =sin...
Read More →In the given figure, ∆ABC and ∆DBC are on the same base BC.
Question: In the given figure, ∆ABC and ∆DBC are on the same base BC. If AD and BC intersect at O, prove thatArea∆ABCArea∆DBC=AODO. Solution: Given: ΔABC and ΔDBC are on the same base BC. AD and BC intersect at O. Prove that: $\frac{\operatorname{Ar}(\triangle \mathrm{ABC})}{\operatorname{Ar}(\triangle \mathrm{DBC})}=\frac{\mathrm{AO}}{\mathrm{DO}}$ Construction: Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{BC}$. Now, in ΔALO and ΔDMO, we have $\angle \mathrm{ALO}=\angle \...
Read More →Prove that
Question: Prove that $x^{2}-y^{2}=c\left(x^{2}+y^{2}\right)^{2}$ is the general solution of differential equation $\left(x^{3}-3 x y^{2}\right) d x=\left(y^{3}-3 x^{2} y\right) d y$, where $c$ is a parameter. Solution: $\left(x^{3}-3 x y^{2}\right) d x=\left(y^{3}-3 x^{2} y\right) d y$ $\Rightarrow \frac{d y}{d x}=\frac{x^{3}-3 x y^{2}}{y^{3}-3 x^{2} y}$ $\ldots(1)$ This is a homogeneous equation. To simplify it, we need to make the substitution as: $y=v x$ $\Rightarrow \frac{d}{d x}(y)=\frac{d}...
Read More →If cos P
Question: If $\cos P=\frac{1}{7}$ and $\cos Q=\frac{13}{14}$, where $P$ and $Q$ both are acute angles. Then, the value of $P-Q$ is (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{12}$ Solution: (b) $60^{\circ}=\frac{\pi}{3}$ $\cos P=\frac{1}{7}, \quad \cos Q=\frac{13}{14}$ Therefore, $\sin P=\sqrt{1-\frac{1}{49}}=\frac{4 \sqrt{3}}{7}$ and $\sin Q=\sqrt{1-\frac{169}{196}}=\frac{3 \sqrt{3}}{14}$ Hence, $\tan P=4 \sqrt{3}, \quad \tan Q=\frac{3 \sqrt{3}}{13}$ $\cos (P-Q)=...
Read More →In ∆ABC, D and E are the mid-points of AB and AC respectively.
Question: In ∆ABC, D and E are the mid-points of AB and AC respectively. Find the ratio of the areas of ∆ADE and ∆ABC. Solution: Given: In ΔABC, D and E are the midpoints of AB and AC respectively. To find: Ratio of the areas of ΔADE and ΔABC. Since it is given that D and E are the midpoints of AB and AC, respectively. Therefore, DE || BC (Converse of mid-point theorem)Also,DE=12BC In ΔADE and ΔABC ADE=BCorrespondinganglesDAE=BACCommonSo,∆ADE~∆ABC (AA Similarity) We know that the ratio of areas ...
Read More →If A + B + C = π,
Question: If $A+B+C=\pi$, then $\frac{\tan A+\tan B+\tan C}{\tan A \tan B \tan C}$ is equal to (a) tanAtanBtanC (b) 0 (c) 1 (d) None of these Solution: (c) 1 = 180 Using tan(180 A) = -tanA, we get: $C=\pi-(A+B)$ Now, $\frac{\tan A+\tan B+\tan C}{\tan A \tan B \tan C}$ $=\frac{\tan A+\tan B+\tan [\pi-(A+B)]}{\tan A \tan B \tan [\pi-(A+B)]}$ $=\frac{\tan A+\tan B-\tan (A+B)}{-\tan A \tan B t \operatorname{an}(A+B)}$ $=\frac{\tan A+\tan B-\frac{\tan A+\tan B}{1-\tan A \tan B}}{-\tan A \tan B \times...
Read More →If A + B + C = π,
Question: If $A+B+C=\pi$, then $\frac{\tan A+\tan B+\tan C}{\tan A \tan B \tan C}$ is equal to (a) tanAtanBtanC (b) 0 (c) 1 (d) None of these Solution: (c) 1 = 180 Using tan(180 A) = -tanA, we get: $C=\pi-(A+B)$ Now, $\frac{\tan A+\tan B+\tan C}{\tan A \tan B \tan C}$ $=\frac{\tan A+\tan B+\tan [\pi-(A+B)]}{\tan A \tan B \tan [\pi-(A+B)]}$ $=\frac{\tan A+\tan B-\tan (A+B)}{-\tan A \tan B t \operatorname{an}(A+B)}$ $=\frac{\tan A+\tan B-\frac{\tan A+\tan B}{1-\tan A \tan B}}{-\tan A \tan B \times...
Read More →In the given figure, DE || BC
Question: In the given figure, DE || BC (i) If $\mathrm{DE}=4 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and Area $(\triangle \mathrm{ADE})=16 \mathrm{~cm}^{2}$, find the area of $\triangle \mathrm{ABC}$. (ii) If $D E=4 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and Area $(\triangle A D E)=25 \mathrm{~cm}^{2}$, find the area of $\triangle A B C$. (iii) If $\mathrm{DE}: \mathrm{BC}=3: 5$. Calculate the ratio of the areas of $\triangle \mathrm{ADE}$ and the trapezium $\mathrm{BCED}$. Solution: In the given ...
Read More →tan 3A − tan 2A − tan A =
Question: tan 3A tan 2A tanA= (a) tan 3Atan 2AtanA (b) tan 3Atan 2AtanA (c) tanAtan 2A tan 2Atan 3A tan 3AtanA (d) None of these Solution: (a) tan 3Atan 2Atan A $3 A=2 A+A$ $\Rightarrow \tan 3 A=\tan (2 A+A)$ $=\frac{\tan 2 A+\tan A}{1-\tan 2 A \tan A}$ $\Rightarrow \tan 3 A-\tan 3 A \tan 2 A \tan A=\tan 2 A+\tan A$ $\Rightarrow \tan 3 A-\tan 2 A-\tan A=\tan 3 A \tan 2 A \tan A$...
Read More →If in ∆ABC, tan A + tan B + tan C = 6,
Question: If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C = (a) 6 (b) 1 (c) $\frac{1}{6}$ (d) None of these Solution: (c) $\frac{1}{6}$ In triangle ABC, $A+B+C=\pi$ We know that $\tan (A+B+C)=\frac{\tan \mathrm{A}+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A}$ and $\tan \pi=0$ $\therefore \tan A+\tan B+\tan C-\tan A \tan B \tan C=0$ $\tan A+\tan B+\tan C=\tan A \tan B \tan C$ If tanA+tanB+tanC=6, tanAtanBtanC=6 $\Rightarrow \frac{1}{\tan A \tan B ...
Read More →ABC is a triangle in which ∠A = 90°, AN ⊥ BC,
Question: $\mathrm{ABC}$ is a triangle in which $\angle \mathrm{A}=90^{\circ}, \mathrm{AN} \perp \mathrm{BC}, \mathrm{BC}=12 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$. Find the ratio of the area of $\triangle \mathrm{ANC}$ and $\triangle \mathrm{ABC}$. Solution: Given: In $\triangle \mathrm{ABC}, \angle A=90^{\circ}, \mathrm{AN} \perp \mathrm{BC}, \mathrm{BC}=12 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$. TO FIND: Ratio of the triangles $\triangle A N C$ and $\triangle A B C$. In ∆ANCan...
Read More →Form the differential equation representing the family of curves given by
Question: Form the differential equation representing the family of curves given by $(x-a)^{2}+2 y^{2}=a^{2}$ where $a$ is an arbitrary constant. Solution: $(x-a)^{2}+2 y^{2}=a^{2}$ $\Rightarrow x^{2}+a^{2}-2 a x+2 y^{2}=a^{2}$ $\Rightarrow 2 y^{2}=2 a x-x^{2}$ $\ldots(1)$ Differentiating with respect tox, we get: $2 y \frac{d y}{d x}=\frac{2 a-2 x}{2}$ $\Rightarrow \frac{d y}{d x}=\frac{a-x}{2 y}$ $\Rightarrow \frac{d y}{d x}=\frac{2 a x-2 x^{2}}{4 x y}$ $\ldots(2)$ From equation (1), we get: $...
Read More →If 3 sin x + 4 cos x = 5,
Question: If 3 sinx+ 4 cosx= 5, then 4 sinx 3 cosx= (a) 0 (b) 5 (c) 1 (d) None of these Solution: (a) 0 $3 \sin x+4 \cos x=5$ $\frac{3}{5} \sin x+\frac{4}{5} \cos x=1$ Let $\cos \alpha=\frac{3}{5}$ and $\sin \alpha=\frac{4}{5}$. $\therefore \cos \alpha \sin x+\sin \alpha \cos x=1$ $\Rightarrow \alpha+x=\frac{\pi}{2}$ $\Rightarrow x=\frac{\pi}{2}-\alpha$ ....(1) We have to find the value of $4 \sin x-3 \cos x$. $4 \sin \left(\frac{\pi}{2}-\alpha\right)-3 \cos \left(\frac{\pi}{2}-\alpha\right) \qu...
Read More →If 3 sin x + 4 cos x = 5,
Question: If 3 sinx+ 4 cosx= 5, then 4 sinx 3 cosx= (a) 0 (b) 5 (c) 1 (d) None of these Solution: (a) 0 $3 \sin x+4 \cos x=5$ $\frac{3}{5} \sin x+\frac{4}{5} \cos x=1$ Let $\cos \alpha=\frac{3}{5}$ and $\sin \alpha=\frac{4}{5}$. $\therefore \cos \alpha \sin x+\sin \alpha \cos x=1$ $\Rightarrow \alpha+x=\frac{\pi}{2}$ $\Rightarrow x=\frac{\pi}{2}-\alpha$ ....(1) We have to find the value of $4 \sin x-3 \cos x$. $4 \sin \left(\frac{\pi}{2}-\alpha\right)-3 \cos \left(\frac{\pi}{2}-\alpha\right) \qu...
Read More →The corresponding altitudes of two similar triangles are 6 cm and 9 cm respectively.
Question: The corresponding altitudes of two similar triangles are 6 cm and 9 cm respectively. Find the ratio of their areas. Solution: Given: The corresponding altitudes of two similar triangles are 6 cm and 9 cm respectively. To find: Ratio of areas of triangle. We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes. $\frac{\operatorname{ar}(\text { triangle } 1)}{\operatorname{ar}(\text { triangle } 2)}=\left(\frac{\text { al...
Read More →If tan A
Question: If $\tan A=\frac{a}{a+1}$ and $\tan B=\frac{1}{2 a+1}$, then the value of $A+B$ is (a) 0 (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{4}$ Solution: (d) $\frac{\pi}{4}$ $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$ $=\frac{\frac{a}{a+1}+\frac{1}{2 a+1}}{1-\frac{a}{(a+1)(2 a+1)}}$ $=\frac{2 a^{2}+a+a+1}{2 a^{2}+3 a+1-a}$ $=\frac{2 a^{2}+2 a+1}{2 a^{2}+2 a+1}$ $=1$ Therefore, $A+B=\tan ^{-1}(1)=\frac{\pi}{4}$....
Read More →The areas of two similar triangles are 25 cm2 and 36 cm2 respectively.
Question: The areas of two similar triangles are $25 \mathrm{~cm}^{2}$ and $36 \mathrm{~cm}^{2}$ respectively. If the altitude of the first triangle is $2.4 \mathrm{~cm}$, find the corresponding altitude of the other. Solution: Given: The area of two similar triangles is 25cm2and 36cm2respectively. If the altitude of first triangle is 2.4cm To find: The altitude of the other triangle We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding ...
Read More →For each of the exercises given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.
Question: For each of the exercises given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation. Solution: (i) $y=a e^{x}+b e^{-x}+x^{2}$ Differentiating both sides with respect tox, we get: $\frac{d y}{d x}=a \frac{d}{d x}\left(e^{x}\right)+b \frac{d}{d x}\left(e^{-x}\right)+\frac{d}{d x}\left(x^{2}\right)$ $\Rightarrow \frac{d y}{d x}=a e^{x}-b e^{-x}+2 x$ Again, differentiating both sides with respect tox, we get: $\frac{d^{2} y}...
Read More →