Form the differential equation representing the family of curves given by $(x-a)^{2}+2 y^{2}=a^{2}$ where $a$ is an arbitrary constant.
$(x-a)^{2}+2 y^{2}=a^{2}$
$\Rightarrow x^{2}+a^{2}-2 a x+2 y^{2}=a^{2}$
$\Rightarrow 2 y^{2}=2 a x-x^{2}$ $\ldots(1)$
Differentiating with respect to x, we get:
$2 y \frac{d y}{d x}=\frac{2 a-2 x}{2}$
$\Rightarrow \frac{d y}{d x}=\frac{a-x}{2 y}$
$\Rightarrow \frac{d y}{d x}=\frac{2 a x-2 x^{2}}{4 x y}$ $\ldots(2)$
From equation (1), we get:
$2 a x=2 y^{2}+x^{2}$
On substituting this value in equation (3), we get:
$\frac{d y}{d x}=\frac{2 y^{2}+x^{2}-2 x^{2}}{4 x y}$
$\Rightarrow \frac{d y}{d x}=\frac{2 y^{2}-x^{2}}{4 x y}$
Hence, the differential equation of the family of curves is given as $\frac{d y}{d x}=\frac{2 y^{2}-x^{2}}{4 x y}$.