Question:
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
(a) 0
(b) 5
(c) 1
(d) None of these
Solution:
(a) 0
$3 \sin x+4 \cos x=5$
$\frac{3}{5} \sin x+\frac{4}{5} \cos x=1$
Let $\cos \alpha=\frac{3}{5}$ and $\sin \alpha=\frac{4}{5}$.
$\therefore \cos \alpha \sin x+\sin \alpha \cos x=1$
$\Rightarrow \alpha+x=\frac{\pi}{2}$
$\Rightarrow x=\frac{\pi}{2}-\alpha$ ....(1)
We have to find the value of $4 \sin x-3 \cos x$.
$4 \sin \left(\frac{\pi}{2}-\alpha\right)-3 \cos \left(\frac{\pi}{2}-\alpha\right) \quad \ldots\{$ From eq $(1)\}$
$=4 \cos \alpha-3 \sin \alpha$
$=4 \times \frac{3}{5}-3 \times \frac{4}{5} \quad\left(\because \cos \alpha=\frac{3}{5}\right.$ and $\left.\sin \alpha=\frac{4}{5}\right)$
$=0$