Question:
$\frac{\cos 10^{\circ}+\sin 10^{\circ}}{\cos 10^{\circ}-\sin 10^{\circ}}=$
(a) tan 55°
(b) cot 55°
(c) −tan 35°
(d) −cot 35°
Solution:
(a) tan 55°
$\frac{\cos 10^{\circ}+\sin 10^{\circ}}{\cos 10^{\circ}-\sin 10^{\circ}}$
$=\frac{1+\tan 10^{\circ}}{1-\tan 10^{\circ}} \quad\left[\right.$ Dividing the numerator and denominator by $\left.\cos 10^{\circ}\right]$
$=\frac{\tan 45^{\circ}+\tan 10^{\circ}}{1-\tan 45^{\circ} \times \tan 10^{\circ}}$
$=\tan \left(45^{\circ}+10^{\circ}\right) \quad\left[\quad U \operatorname{sing} \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}\right]$
$=\tan 55^{\circ}$