If $\cos P=\frac{1}{7}$ and $\cos Q=\frac{13}{14}$, where $P$ and $Q$ both are acute angles. Then, the value of $P-Q$ is
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{12}$
(b) $60^{\circ}=\frac{\pi}{3}$
$\cos P=\frac{1}{7}, \quad \cos Q=\frac{13}{14}$
Therefore, $\sin P=\sqrt{1-\frac{1}{49}}=\frac{4 \sqrt{3}}{7}$ and $\sin Q=\sqrt{1-\frac{169}{196}}=\frac{3 \sqrt{3}}{14}$
Hence, $\tan P=4 \sqrt{3}, \quad \tan Q=\frac{3 \sqrt{3}}{13}$
$\cos (P-Q)=\cos P \cos Q+\sin P \sin Q$
$=\frac{1}{7} \times \frac{13}{14}+\frac{4 \sqrt{3}}{7} \times \frac{3 \sqrt{3}}{14}$
$=\frac{13+36}{98}$
$=\frac{49}{98}$
$\therefore \cos (P-Q)=\frac{1}{2}$
$\Rightarrow P-Q=\cos ^{-1} \frac{1}{2}$
$\Rightarrow P-Q=60^{\circ}$
Hence, the correct answer is option B.