ABCD is a trapezium in which AB || CD. The diagonals AC and BD intersect at O. Prove that :(i) $\triangle \mathrm{AOB} \sim \Delta \mathrm{COD}$ (ii) If $\mathrm{OA}=6 \mathrm{~cm}, \mathrm{OC}=8 \mathrm{~cm}$,
Find:
(a) Area ∆AOBArea ∆COD
(b) Area ∆AODArea ∆COD
Given: ABCD is a trapezium in which AB || CD.
The diagonals AC and BD intersect at O.
To prove:
(i) $\triangle \mathrm{AOB} \sim \Delta \mathrm{COD}$
(ii) If $\mathrm{OA}=6 \mathrm{~cm}, \mathrm{OC}=8 \mathrm{~cm}$
To find:
(a) $\frac{\operatorname{ar}(\Delta \mathrm{AOB})}{\operatorname{ar}(\Delta \mathrm{COD})}$
(b) $\frac{\operatorname{ar}(\Delta \mathrm{AOD})}{\operatorname{ar}(\Delta \mathrm{COD})}$
Construction: Draw a line MN passing through O and parallel to AB and CD
(i) Now in ΔAOB and ΔCOD
∠OAB=∠OCD Alternate angles∠OBA=∠ODC Alternate angles
$\angle \mathrm{AOB}=\angle \mathrm{COD}($ vertically opposite angle $)$
$\Rightarrow \Delta \mathrm{AOB} \sim \Delta \mathrm{COD}$ (A.A.Acrieteria)
(ii) (a)We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
$\frac{a r(\Delta \mathrm{AOB})}{a r(\Delta \mathrm{COD})}=\left(\frac{\mathrm{OA}}{\mathrm{OC}}\right)^{2}$
$=\left(\frac{6}{8}\right)^{2}$
$\frac{a r(\Delta \mathrm{AOB})}{a r^{\prime}(\Delta \mathrm{COD})}=\frac{9}{16}$
(b)We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
ar∆AODar∆COD=OAOC2 =6cm8cm2 =916