If tan A

Question:

If $\tan A=\frac{a}{a+1}$ and $\tan B=\frac{1}{2 a+1}$, then the value of $A+B$ is

(a) 0

(b) $\frac{\pi}{2}$

(c) $\frac{\pi}{3}$

(d) $\frac{\pi}{4}$

Solution:

(d) $\frac{\pi}{4}$

$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$

$=\frac{\frac{a}{a+1}+\frac{1}{2 a+1}}{1-\frac{a}{(a+1)(2 a+1)}}$

$=\frac{2 a^{2}+a+a+1}{2 a^{2}+3 a+1-a}$

$=\frac{2 a^{2}+2 a+1}{2 a^{2}+2 a+1}$

$=1$

Therefore, $A+B=\tan ^{-1}(1)=\frac{\pi}{4}$.

Leave a comment