If in ∆ABC, tan A + tan B + tan C = 6,

Question:

If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =

(a) 6

(b) 1

(c) $\frac{1}{6}$

(d) None of these

Solution:

(c) $\frac{1}{6}$

In triangle ABC,

$A+B+C=\pi$

We know that $\tan (A+B+C)=\frac{\tan \mathrm{A}+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A}$

and $\tan \pi=0$

$\therefore \tan A+\tan B+\tan C-\tan A \tan B \tan C=0$

$\tan A+\tan B+\tan C=\tan A \tan B \tan C$

If tan A+tan B+tan C =6,

tan A tan B tan C =6

$\Rightarrow \frac{1}{\tan A \tan B \tan C}=\frac{1}{6}$

$\Rightarrow \cot A \cot B \cot C=\frac{1}{6}$

 

 

Leave a comment