Tick (✓) the correct answer:

Question: Tick (✓) the correct answer: x3 144x= ? (a)x(x 12)2 (b)x(x+ 12)2(c)x(x 12)(x+ 12) (d) none of these Solution: (c)x(x 12)(x+ 12) $x^{3}-144 x$ $=x\left(x^{2}-144\right)$ $=x(x-12)(x+12)$...

Read More →

Solve this

Question: If $\mathrm{y}=\sqrt{\mathrm{x}+1}+\sqrt{\mathrm{x}-1}$, prove that $\sqrt{\mathrm{x}^{2}-1} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2} \mathrm{y}$. Solution: Given $\mathrm{y}=\sqrt{\mathrm{x}+1}+\sqrt{\mathrm{x}-1}$ On differentiating $y$ with respect to $x$, we get $\frac{d y}{d x}=\frac{d}{d x}(\sqrt{x+1}+\sqrt{x-1})$ $\Rightarrow \frac{d y}{d x}=\frac{d}{d x}(\sqrt{x+1})+\frac{d}{d x}(\sqrt{x-1})$ $\Rightarrow \frac{d y}{d x}=\frac{d}{d x}(x+1)^{\frac{1}{2}}+\frac{d}{d x}(x-1)^{\...

Read More →

Tick (✓) the correct answer:

Question: Tick (✓) the correct answer: (2x 32x3) = ? (a) 2(x 4)(x+ 4) (b) 2x(1 2x)2 (c) 2x(1 + 2x)2 (d) 2x(1 4x)(1 + 4x) Solution: (d) 2x(1 4x)(1 + 4x) $\left(2 x-32 x^{3}\right)$ $=2 x\left(1-16 x^{2}\right)$ $=2 x(1-4 x)(1+4 x)$...

Read More →

Tick (✓) the correct answer:

Question: Tick (✓) the correct answer: (7a2 63b2) = ? (a) (7a 9b)(9a+ 7b) (b) (7a 9b)(7a+ 9b) (c) 9(a 3b)(a+ 3b) (d) 7(a 3b)(a+ 3b) Solution: (d) 7(a 3b)(a+ 3b) $\left(7 a^{2}-63 b^{2}\right)=7\left(a^{2}-9 b^{2}\right)$ $=7(a-3 b)(a+3 b)$...

Read More →

Solve this

Question: If $\mathrm{y}=\sqrt{\mathrm{x}+1}+\sqrt{\mathrm{x}-1}$, prove that $\sqrt{\mathrm{x}^{2}-1} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2} \mathrm{y}$. Solution: Given $\mathrm{y}=\sqrt{\mathrm{x}+1}+\sqrt{\mathrm{x}-1}$ On differentiating $y$ with respect to $x$, we get $\frac{d y}{d x}=\frac{d}{d x}(\sqrt{x+1}+\sqrt{x-1})$ $\Rightarrow \frac{d y}{d x}=\frac{d}{d x}(\sqrt{x+1})+\frac{d}{d x}(\sqrt{x-1})$ $\Rightarrow \frac{d y}{d x}=\frac{d}{d x}(x+1)^{\frac{1}{2}}+\frac{d}{d x}(x-1)^{\...

Read More →

Factorise:

Question: Factorise:7x2 19x 6 Solution: The given expression is $7 x^{2}-19 x-6$. Find two numbers that follow the conditions given below: Sum $=-19$ Product $=7 \times-6=-42$ Clearly, the numbers are $-21$ and 2 . $7 x^{2}-19 x-6=7 x^{2}-21 x+2 x-6$ $=7 x(x-3)+2(x-3)$ $=(7 x+2)(x-3)$...

Read More →

Factorise:

Question: Factorise:6x2 17x 3 Solution: The given expression is $6 x^{2}-17 x-3$. Find two numbers that follow the conditions given below : Sum $=-17$ Product $=6 \times-3=-18$ Clearly, the numbers are $-18$ and 1 . $6 x^{2}-17 x-3=6 x^{2}-18 x+x-3$ $=6 x(x-3)+1(x-3)$ $=(6 x+1)(x-3)$...

Read More →

Factorise:

Question: Factorise:4n2 8n+ 3 Solution: The given expression is $4 n^{2}-8 n+3$. Find two numbers that follow the conditions given below: Sum $=-8$ Product $=4 \times 3=12$ Clearly, the numbers are $-6$ and $-2$. $4 n^{2}-8 n+3=4 n^{2}-2 n-6 n+3$ $=2 n(2 n-1)-3(2 n-1)$ $=(2 n-1)(2 n-3)$...

Read More →

Factorise:

Question: Factorise:3m2+ 24m+ 36 Solution: The given expression is $3 m^{2}+24 m+36$. Find two numbers that follow the conditions given below: Sum $=24$ Product $=36 \times 3=108$ Clearly, the numbers are 18 and 6 . $3 m^{2}+24 m+36=3 m^{2}+18 m+6 m+36$ $=3 m(m+6)+6(m+6)$ $=(3 m+6)(m+6)=3(m+2)(m+6)$...

Read More →

Solve this

Question: If $\mathrm{y}=\log \{\sqrt{\mathrm{x}-1}-\sqrt{\mathrm{x}+1}\}$, show that $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-1}{2 \sqrt{\mathrm{x}^{2}-1}}$. Solution: Given $y=\log (\sqrt{x-1}-\sqrt{x+1})$ On differentiating $y$ with respect to $x$, we get $\frac{d y}{d x}=\frac{d}{d x}[\log (\sqrt{x-1}-\sqrt{x+1})]$ We know $\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}$ $\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\sqrt{\mathrm{x}-1}-\sqrt{\mathrm{x}+1}} \frac{...

Read More →

Factorise:

Question: Factorise:6x2 5x 6 Solution: The given expression is $6 x^{2}-5 x-6$. Find two numbers that follow the conditions given below: Sum $=-5$ Product $=-6 \times 6=-36$ Clearly, the numbers are $-9$ and 4 . $6 x^{2}-5 x-6=6 x^{2}-9 x+4 x-6$ $=3 x(2 x-3)+2(2 x-3)$ $=(2 x-3)(3 x+2)$...

Read More →

Factorise:

Question: Factorise:3 + 23z 8z2 Solution: The given expression is $3+23 z-8 z^{2}$. Find two numbers that follow the conditions given below: Sum $=23$ Product $=3 \times-8=-24$ Clearly, the numbers are 24 and $-1$. $3+23 z-8 z^{2}=3+24 z-z-8 z^{2}$ $=3(1+8 z)-z(1+8 z)$ $=(1+8 z)(3-z)$...

Read More →

Factorise:

Question: Factorise:28 31x 5x2 Solution: The given expression is $28-31 x-5 x^{2}$. Find two numbers that follow the conditions given below: Sum $=-31$ Product $=28 \times-5=-140$ Clearly, the numbers are $-35$ and 4 . $28-31 x-5 x^{2}=28+4 x-35 x-5 x^{2}$ $=4(x+7)-5 x(7+x)$ $=(x+7)(4-5 x)$...

Read More →

Differentiate the following functions with respect to x :

Question: Differentiate the following functions with respect to $x$ : $\log \sqrt{\frac{x-1}{x+1}}$ Solution: Let $y=\log \sqrt{\frac{x-1}{x+1}}$ On differentiating $y$ with respect to $x$, we get $\frac{d y}{d x}=\frac{d}{d x}\left(\log \sqrt{\frac{x-1}{x+1}}\right)$ $\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\log \left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right)^{\frac{1}{2}}\right]$ We know $\frac{d}{d x}(\log x)=\frac{1}{x}$ $\Rightarrow \frac{\mathrm{dy}}{...

Read More →

Factorise:

Question: Factorise:7y2 19y 6 Solution: The given expression is $7 y^{2}-19 y-6$. Find two numbers that follow the conditions given below: Sum $=-19$ Product $=7 \times-6=-42$ Clearly, the numbers are $-21$ and 2 . $7 y^{2}-19 y-6=7 y^{2}-21 y+2 y-6$ $=7 y(y-3)+2(y-3)$ $=(7 y+2)(y-3)$...

Read More →

Factorise:

Question: Factorise:2x2 17x 30 Solution: The given expression is $2 x^{2}-17 x-30$. Find two numbers that follow the conditions given below: Sum $=-17$ Product $=-30 \times 2=-60$ Clearly, the numbers are $-20$ and 3 . $2 x^{2}-17 x-30=2 x^{2}-20 x+3 x-30$ $=2 x(x-10)+3(x-10)$ $=(2 x+3)(x-10)$...

Read More →

Differentiate the following functions with respect to x :

Question: Differentiate the following functions with respect to $x$ : $\cos (\log x)^{2}$ Solution: Let $y=\cos (\log x)^{2}$ On differentiating y with respect to $x$, we get $\frac{d y}{d x}=\frac{d}{d x}\left[\cos (\log x)^{2}\right]$ We have $\frac{d}{d x}(\cos x)=-\sin x$ $\Rightarrow \frac{d y}{d x}=-\sin (\log x)^{2} \frac{d}{d x}\left[(\log x)^{2}\right]$ [using chain rule] We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ $\Rightarrow \frac{d y}{d x}=-\sin (\log x)^{2}\left[2(\log x)^{...

Read More →

Factorise:

Question: Factorise:6p2+ 11p 10 Solution: The given expression is $6 p^{2}+11 p-10$. Find two numbers that follow the conditions given below: Sum $=11$ Product $=6 \times-10=-60$ Clearly, the numbers are 15 and $-4$ $6 p^{2}+11 p-10=6 p^{2}+15 p-4 p-10$ $=3 p(2 p+5)-2(2 p+5)$ $=(2 p+5)(3 p-2)$...

Read More →

Factorise:

Question: Factorise:2x2+x 45 Solution: The given expression is $2 x^{2}+x-45$. Find two numbers that follow the conditions given below: Sum $=1$ Product $=-45 \times 2=-90$ Clearly, the numbers are 10 and $-9$. $2 x^{2}+x-45=2 x^{2}+10 x-9 x-45$ $=2 x(x+5)-9(x+5)$ $=(2 x-9)(x+5)$...

Read More →

Factorise:

Question: Factorise:3z2 10z+ 8 Solution: The given expression is $3 z^{2}-10 z+8$. Find two numbers that follow the conditions given below: Sum $=-10$ Product $=3 \times 8=24$ Clearly, the numbers are $-6$ and $-4$. $3 z^{2}-10 z+8=3 z^{2}-6 z-4 z+8$ $=3 z(z-2)-4(z-2)$ $=(3 z-4)(z-2)$...

Read More →

Differentiate the following functions with respect to x :

Question: Differentiate the following functions with respect to $x$ : $\log \left(\cos x^{2}\right)$ Solution: Let $y=\log \left(\cos x^{2}\right)$ On differentiating y with respect to $x$, we get $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\log \left(\cos \mathrm{x}^{2}\right)\right]$ We have $\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}$ $\Rightarrow \frac{d y}{d x}=\frac{1}{\cos x^{2}} \frac{d}{d x}\left(\cos x^{2}\right)$ [using chain rule] We...

Read More →

Factorise:

Question: Factorise:3y2+ 14y+ 8 Solution: The given expression is $3 y^{2}+14 y+8$ Find two numbers that follow the conditions given below: Sum $=14$ Product $=24$ Clearly, the numbers are 12 and 2 . $3 y^{2}+14 y+8=3 y^{2}+12 y+2 y+8$ $=3 y(y+4)+2(y+4)$ $=(3 y+2)(y+4)$...

Read More →

50 students enter for a school javelin

Question: 50 students enter for a school javelin throw competition. The distance (in metre) thrown are recorded below (i) Construct a cumulative frequency table. (ii) Draw a cumulative frequency curve (less than type) and calculate the median distance drawn by using this curve. (iii) Calculate the median distance by using the formula for median. (iv) Are the median distance calculated in (ii) and (iii) same? Solution: To draw less than type ogive, we plot the points (0, 0), (20, 6), (40,17), (60...

Read More →

Factorise:

Question: Factorise:3x2+ 10x+ 8 Solution: The given expression is $3 x^{2}+10 x+8$. Find two numbers that follow the conditions given below: Sum $=10$ Product $=3 \times 8=24$ Clearly, the numbers are 6 and 4 . $3 x^{2}+10 x+8=3 x^{2}+10 x+8$ $=3 x^{2}+6 x+4 x+8$ $=3 x(x+2)+4(x+2)$ $=(x+2)(3 x+4)$...

Read More →

Differentiate the following functions with respect to $x$ :

Question: Differentiate the following functions with respect to $x$ : $e^{a x} \sec (x) \tan (2 x)$ Solution: Let $y=e^{a x} \sec (x) \tan (2 x)$ On differentiating $y$ with respect to $x$, we get $\frac{d y}{d x}=\frac{d}{d x}\left(e^{\operatorname{ax}} \sec x \tan 2 x\right)$ $\frac{d y}{d x}=\frac{d}{d x}\left[e^{\operatorname{ax}} \times(\sec x \tan 2 x)\right]$ We have (uv)' = vu' + uv' (product rule) $\Rightarrow \frac{d y}{d x}=\sec x \tan 2 x \frac{d}{d x}\left(e^{a x}\right)+e^{a x} \fr...

Read More →