XY is a line parallel to side BC of a triangle ABC. If BE || AC and CF || AB meet XY at E and E respectively
Question.
XY is a line parallel to side BC of a triangle ABC. If BE || AC and CF || AB meet XY at E and E respectively, show that ar (ABE) = ar (ACF)
Solution:
It is given that
$X Y\|B C \Rightarrow E Y\| B C$
$B E\|A C \Rightarrow B E\| C Y$
Therefore, $\mathrm{EBCY}$ is a parallelogram.
It is given that
$X Y\|B C \Rightarrow X F\| B C$
$\mathrm{FC}\|\mathrm{AB} \Rightarrow \mathrm{FC}\| \mathrm{XB}$
Therefore, BCFX is a parallelogram.
Parallelograms EBCY and BCFX are on the same base BC and between the same parallels BC and EF.
$\therefore$ Area $(\mathrm{EBCY})=$ Area $(\mathrm{BCFX}) \ldots(1)$
Consider parallelogram EBCY and $\triangle A E B$
These lie on the same base $B E$ and are between the same parallels $B E$ and $A C$.
$\therefore$ Area $(\triangle \mathrm{ABE})=\frac{1}{2}$ Area $(\mathrm{EBCY})$..(2)
Also, parallelogram $B C F X$ and $\triangle A C F$ are on the same base $C F$ and between the same parallels $C F$ and $A B$.
$\therefore$ Area $(\triangle \mathrm{ACF})=\frac{1}{2}$ Area $(\mathrm{BCFX}) \ldots$(3)
From equations $(1),(2)$, and $(3)$, we obtain
Area $(\triangle \mathrm{ABE})=$ Area $(\triangle \mathrm{ACF})$
It is given that
$X Y\|B C \Rightarrow E Y\| B C$
$B E\|A C \Rightarrow B E\| C Y$
Therefore, $\mathrm{EBCY}$ is a parallelogram.
It is given that
$X Y\|B C \Rightarrow X F\| B C$
$\mathrm{FC}\|\mathrm{AB} \Rightarrow \mathrm{FC}\| \mathrm{XB}$
Therefore, BCFX is a parallelogram.
Parallelograms EBCY and BCFX are on the same base BC and between the same parallels BC and EF.
$\therefore$ Area $(\mathrm{EBCY})=$ Area $(\mathrm{BCFX}) \ldots(1)$
Consider parallelogram EBCY and $\triangle A E B$
These lie on the same base $B E$ and are between the same parallels $B E$ and $A C$.
$\therefore$ Area $(\triangle \mathrm{ABE})=\frac{1}{2}$ Area $(\mathrm{EBCY})$..(2)
Also, parallelogram $B C F X$ and $\triangle A C F$ are on the same base $C F$ and between the same parallels $C F$ and $A B$.
$\therefore$ Area $(\triangle \mathrm{ACF})=\frac{1}{2}$ Area $(\mathrm{BCFX}) \ldots$(3)
From equations $(1),(2)$, and $(3)$, we obtain
Area $(\triangle \mathrm{ABE})=$ Area $(\triangle \mathrm{ACF})$