Question:
x = 5, y = 2 is a solution of the linear equation
(a) x + 2y = 7
(b) 5x + 2y = 7
(c) x + y = 7
(d) 5x + y = 7
Solution:
Substituting the values x = 5, y = 2 in
(a) x + 2y = 7, we get
LHS $=5+2(2)=5+4=9 \neq 7=$ RHS
i.e. LHS $\neq$ RHS
(b) 5x + 2y = 7, we get
LHS $=5(5)+2(2)=25+4=29 \neq 7=$ RHS
i.e. LHS $\neq$ RHS
(c) x + y = 7, we get
LHS $=5+2=7=$ RHS
i.e. $\mathrm{LHS}=\mathrm{RHS}$
(d) 5x + y = 7, we get
$\mathrm{LHS}=5(5)+2=25+2=27 \neq 7=\mathrm{RHS}$
i.e. $\mathrm{LHS} \neq \mathrm{RHS}$
Hence, the correct option is (c).