Question:
Write the values of the square root of i.\
Solution:
Let the square root of $i$ be $x+i y$.
$\Rightarrow \sqrt{i}=x+i y$
$\Rightarrow i=x^{2}+y^{2} i^{2}+2 i x y$
$\Rightarrow i=x^{2}-y^{2}+2 i x y$ (Squaring both the sides)
Comparing both the sides:
$x^{2}-y^{2}=0$ ...(i)
and $2 x y=1$ ...(ii)
By equation (ii), we find that $x$ and $y$ are of the same sign.From equation (i),
$x=\pm y$
$\therefore x y=\frac{1}{2}, x^{2}=\frac{1}{2}$
$x=\pm \frac{1}{\sqrt{2}}, y=\pm \frac{1}{\sqrt{2}}$
$\therefore \sqrt{i}=\pm \frac{1}{\sqrt{2}}(1+i)$