Question:
Write the value of $\sin \frac{\pi}{12} \sin \frac{5 \pi}{12}$.
Solution:
$\sin \frac{\pi}{12} \sin \frac{5 \pi}{12}$
$=\frac{1}{2} \times 2\left(\sin \frac{\pi}{12}\right)\left(\sin \frac{5 \pi}{12}\right)$
$=\frac{1}{2}\left[\cos \left(\frac{\pi}{12}-\frac{5 \pi}{12}\right)-\cos \left(\frac{\pi}{12}+\frac{5 \pi}{12}\right)\right]$ $[\because 2 \sin A \sin B=\cos (A-B)-\cos (A+B)]$
$=\frac{1}{2}\left[\cos \left(-\frac{\pi}{3}\right)-\cos \frac{\pi}{2}\right]$
$=\frac{1}{2}\left(\frac{1}{2}-0\right)$
$=\frac{1}{4}$