Question:
Write the value of $k$ for which the system of equations $x+k y=0,2 x-y=0$ has unique solution.
Solution:
The given equations are
$x+k y=0$
$2 x-y=0$
$a_{1}=1, a_{2}=2, b_{1}=k, b_{2}=-1$
$\frac{a_{1}}{a_{2}}=\frac{1}{2}$
$\frac{b_{1}}{b_{2}}=\frac{k}{-1}$
For unique solution $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
$-1 \times 1 \neq 2 \times k$
$-1 \neq 2 k$
$\frac{-1}{2} \neq k$
For all real values of $k$, except $k=\frac{-1}{2}$ the equations have unique solutions.