Write the value of $\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}$.
We have,
$\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}=\frac{2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}}{2 \sin \frac{\pi}{7}}$
$\left[\right.$ On dividing and multiplying by $\left.2 \sin \frac{\pi}{7}\right]$
$=\frac{2 \times \sin \frac{2 \pi}{7} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}}{2 \times 2 \sin \frac{\pi}{7}}$
Proceeding in the same way, we get
$\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}=\frac{\sin \frac{8 \pi}{7}}{8 \sin \frac{\pi}{7}}$
$=\frac{\sin \left(\pi+\frac{\pi}{7}\right)}{8 \sin \frac{\pi}{7}}$
$=\frac{-\sin \frac{\pi}{7}}{8 \sin \frac{\pi}{7}}$
$\therefore \cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}=\frac{-1}{8}$