Write the value of $b$ for which $f(x)=\left\{\begin{array}{rl}5 x-4 & 0
Given: $f(x)=\left\{\begin{array}{l}5 x-4,0 If $f(x)$ is continuous at $x=1$, then $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$ ....(1) Now, $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0} 5(1-h)-4=5-4=1$ $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0} 4(1+h)^{2}+3 b(1+h)=4+3 b$ Also, $f(1)=5(1)-4=1$ $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1) \quad$ [From eq. (1)] $\Rightarrow 1=4+3 b=1$ $\Rightarrow 1=4+3 b$ $\Rightarrow-3=3 b$ $\Rightarrow b=-1$ Thus, for $b=-1$, the function $f(x)$ is continuous at $x=1$.