Question:
Write the value of $0 . \overline{423}$ in the form of a simple fraction.
Solution:
Let, x=0.423423423… …(i)
Multiplying this equation by 1000 on both the sides so that repetitive terms cancel out and we get:
1000x=423.423423423… …(ii)
Equation (ii)-(i),
⇒ 1000x-x=423.423423423-0.423423423=423
⇒ 999x=423
$\Rightarrow \mathrm{X}=\frac{423}{999}=\frac{47}{111}$
$0 . \overline{423}=\frac{47}{111}$