Question:
Write the value of $\sin \left(\cot ^{-1} x\right)$.
Solution:
We know
$\cot ^{-1} x=\tan ^{-1} \frac{1}{x}$
Now, we have
$\sin \left(\cot ^{-1} x\right)=\sin \left(\tan ^{-1} \frac{1}{x}\right)$
$=\sin \left[\sin ^{-1}\left(\frac{\frac{1}{x}}{\sqrt{1+\frac{1}{x^{2}}}}\right)\right] \quad\left[\because \tan ^{-1} x=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)\right]$
$=\sin \left[\sin ^{-1}\left(\frac{\frac{1}{x}}{\frac{\sqrt{x^{2}+1}}{x}}\right)\right]$
$=\sin \left(\sin ^{-1} \frac{1}{\sqrt{x^{2}+1}}\right)$
$=\frac{1}{\sqrt{x^{2}+1}} \quad\left[\because \sin \left(\sin ^{-1} x=x\right)\right]$
Hence, $\sin \left(\cot ^{-1} x\right)=\frac{1}{\sqrt{x^{2}-1}}$