Question:
Write the sum of 20 terms of the series $1+\frac{1}{2}(1+2)+\frac{1}{3}(1+2+3)+\ldots$
Solution:
Let the $n$th term be $a_{n}$.
Here,
$a_{n}=\frac{1}{n}(1+2+3+\ldots+n)=\left(\frac{n+1}{2}\right)$
We know:
$S_{n}=\sum_{k=1}^{n} a_{k}$
Thus, we have:
$S_{20}=\sum_{k=1}^{20} a_{k}$
$=\frac{1}{2}\left[\sum_{k=1}^{20}(k+1)\right]$
$=\frac{1}{2}\left[\sum_{k=1}^{20} k+20\right]$
$=\frac{1}{2}\left[\frac{20(21)}{2}+20\right]$
$=\frac{1}{2}[230]$
$=115$