Write the solution set of the inequation |x − 1| ≥ |x − 3|.
We have:
$|x-1| \geq|x-3|$
$\Rightarrow|x-1|-|x-3| \geq 0$
The LHS of the inequation has two seperate modulus. Equating these to zero, we obtain $x=1,3$ as critical points.
These points divide the real line in three regions, i.e $(-\infty, 1],[1,3],[3, \infty)$.
CASE 1: When $-\infty $\therefore|x-1|-|x-3| \geq 0$ $\Rightarrow-(x-1)-[-(x-3)] \geq 0$ $\Rightarrow-x+1+x-3 \geq 0$ $\Rightarrow-2 \geq 0$ But this is not possible. CASE 2 : When $1 \leq x \leq 3$, then $|x-1|=x-1$ and $|x-3|=-(x-3)$ $\therefore|x-1|-|x-3| \geq 0$ $\Rightarrow x-1+x-3 \geq 0$ $\Rightarrow \Rightarrow 2 x \geq 4$ $\Rightarrow x \geq 2$ $\Rightarrow x \in[2, \infty)$ CASE 3 : When $3 \leq x<\infty$, then $|x-1|=x-1$ and $|x-3|=x-3$ $\therefore|x-1|-|x-3| \geq 0$ $\Rightarrow x-1-x+3 \geq 0$ $\Rightarrow 2 \geq 0$ This is true. Hence, the solution to the given inequality comes from case $s 2$ and 3 . $[2, \infty) \mathrm{U}[3, \infty)=[2, \infty)$ $\therefore x \in[2, \infty)$