Question:
Write the principal argument of $(1+i \sqrt{3})^{2}$
Solution:
Let, $\mathrm{z}=(1+\mathrm{i} \sqrt{3})^{2}$
$=(1)^{2}+(i \sqrt{3})^{2}+2 \sqrt{3} i$
$=1-1+2 \sqrt{3} i$
$z=0+2 \sqrt{3} i$
Let $0=r \cos \theta$ and $2 \sqrt{3}=r \sin \theta$
By squaring and adding, we get
$(0)^{2}+(2 \sqrt{3})^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}$
$\Rightarrow 0+(2 \sqrt{3})^{2}=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\Rightarrow(2 \sqrt{3})^{2}=r^{2}$
$\Rightarrow r=2 \sqrt{3}$
∴ cosθ= 0 and sinθ=1
Since, θ lies in first quadrant, we have
$\theta=\frac{\pi}{2}$
Since, $\theta \in(-\pi, \pi]$ it is principal argument.