Question:
Write the point where $f(x)=x \log , x$ attains minimum value.
Solution:
Given : $f(x)=x \log _{e} x$
$\Rightarrow f^{\prime}(x)=\log _{e} x+1$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow \log _{e} x+1=0$
$\Rightarrow \log _{e} x=-1$
$\Rightarrow x=\frac{1}{e}$
$\Rightarrow f\left(\frac{1}{e}\right)=\frac{1}{e} \log _{e}\left(\frac{1}{e}\right)=-\frac{1}{e}$
Now,
$f^{\prime \prime}(x)=\frac{1}{x}$
$f^{\prime \prime}\left(\frac{1}{e}\right)=\frac{1}{\frac{1}{e}}=e>0$
So, $\left(\frac{1}{e},-\frac{1}{e}\right)$ is a point of local minimum.