Write the number of terms in the expansion of $(\sqrt{2}+1)^{5}+(\sqrt{2}-1)^{5}$
To find: the number of terms in the expansion of $(\sqrt{2}+1)^{5}+(\sqrt{2}-1)^{5}$
Formula Used:
Binomial expansion of $(x+y)^{n}$ is given by,
$(\mathrm{x}+\mathrm{y})^{\mathrm{n}}=\sum_{r=0}^{n}\left(\begin{array}{l}\mathrm{n} \\ \mathrm{r}\end{array}\right) \mathrm{x}^{\mathrm{n}-\mathrm{r}} \times \mathrm{y}^{\mathrm{r}}$
Thus,
$(\sqrt{2}+1)^{5}+(\sqrt{2}-1)^{5}$
$=\left((\sqrt{2})^{5}+(\sqrt{2})^{4}\left(\begin{array}{l}5 \\ 1\end{array}\right)+\cdots+\left(\begin{array}{l}5 \\ 5\end{array}\right)\right)$
$+\left((\sqrt{2})^{5}-(\sqrt{2})^{4}\left(\begin{array}{l}5 \\ 1\end{array}\right)+\cdots-\left(\begin{array}{l}5 \\ 5\end{array}\right)\right)$
So, the no. of terms left would be 6
Thus, the number of terms in the expansion of $(\sqrt{2}+1)^{5}+(\sqrt{2}-1)^{5}$ is 6