Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
Let $\alpha$ and $\beta$ be the real roots of the quadratic equation $a x^{2}+b x+c=0$.
On squaring these roots, we get:
$\alpha=\alpha^{2} \quad$ and $\quad \beta=\beta^{2}$
$\Rightarrow \alpha(1-\alpha)=0$ and $\beta(1-\beta)=0$
$\Rightarrow \alpha=0, \alpha=1$ and $\beta=0,1$
Three cases arise:
(i) $\alpha=0, \beta=0$
(ii) $\alpha=1, \beta=0$
(iii) $\alpha=1, \beta=1$
$(i) \alpha=0, \beta=0$
$\therefore \alpha+\beta=0$ and $\alpha \beta=0$
So, the corresponding quadratic equation is,
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$\Rightarrow x^{2}=0$
$(i i) \alpha=0, \beta=1$
$\alpha+\beta=1$
$\alpha \beta=0$
So, the corresponding quadratic equation is,
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$\Rightarrow x^{2}-x+0=0$
$\Rightarrow x^{2}-x=0$
$(i i i) \alpha=1, \beta=1$
$\alpha+\beta=2$
$\alpha \beta=1$
So, the corresponding quadratic equation is,
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$\Rightarrow x^{2}-2 x+1=0$
Hence, we can construct 3 quadratic equations.