Question:
Write the number of points of intersection of the curves $2 y=-1$ and $y=\operatorname{cosec} x$.
Solution:
Given;
$2 y=-1$ and $y=\operatorname{cosec} x$
Now,
$2 y=-1 \Rightarrow y=-\frac{1}{2}$
Also,
$\operatorname{cosec} x=y$
$\Rightarrow \operatorname{cosec} x=-\frac{1}{2}$
$\Rightarrow \frac{1}{\sin x}=-\frac{1}{2}$
$\Rightarrow \sin x=-2$
The value of sine function lies between $-1$ and 1 . Therefore, the two curves will not intersect at any point.
Hence, the number of points of intersection of the curves is $0 .$