Write the minimum value of $f(x)=x^{x}$.
Given: $f(x)=x^{x}$
Taking log on both sides, we get
$\log f(x)=x \log x$
Differentiating w.r.t. $x$, we get
$\frac{1}{f(x)} f^{\prime}(x)=\log x+1$
$\Rightarrow f^{\prime}(x)=f(x)(\log x+1)$
$\Rightarrow f^{\prime}(x)=x^{x}(\log x+1)$ .......(1)
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow x^{x}(\log x+1)=0$
$\Rightarrow \log x=-1$
$\Rightarrow x=\frac{1}{e}$
Now,
$f^{\prime \prime}(x)=x^{x}(\log x+1)^{2}+x^{x} \times \frac{1}{x}=x^{x}(\log x+1)^{2}+x^{x-1}$
At $x=\frac{1}{e}:$
$f^{\prime \prime}\left(\frac{1}{e}\right)=\frac{1}{e}^{\frac{1}{e}}\left(\log \frac{1}{e}+1\right)^{2}+\frac{1}{e}^{\frac{1}{e}-1}=\frac{1}{e}^{\frac{1}{e}-1}>0$
So, $x=\frac{1}{e}$ is a point of local minimum.
Thus, the minimum value is given by
$f\left(\frac{1}{e}\right)=\frac{1}{e}^{\frac{1}{e}}=e^{\frac{-1}{e}}$