Question:
Write the minimum value of $\mathrm{f}(\mathrm{x})=x+\frac{1}{x}, x>0$
Solution:
Given : $f(x)=x+\frac{1}{x}$
$\Rightarrow f^{\prime}(x)=1-\frac{1}{x^{2}}$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow 1-\frac{1}{x^{2}}=0$
$\Rightarrow x^{2}=1$
$\Rightarrow x=1,-1$
But $x>0$
$\Rightarrow x=1$
Now,
$f^{\prime \prime}(x)=\frac{1}{x^{3}}$
At $x=1:$
$f^{\prime \prime}(1)=\frac{2}{(1)^{3}}=2>0$
So, $x=1$ is a point of local minimum.
Thus, the local minimum value is given by
$f(1)=1+\frac{1}{1}=1+1=2$