Question:
Write the maximum value of $\mathrm{f}(\mathrm{x})=\frac{\log x}{x}$, if it exists.
Solution:
Given : $f(x)=\frac{\log x}{x}$
$\Rightarrow f^{\prime}(x)=\frac{1-\log x}{x^{2}}$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow \frac{1-\log x}{x^{2}}=0$
$\Rightarrow 1-\log x=0$
$\Rightarrow \log x=1$
$\Rightarrow \log x=\log e$
$\Rightarrow x=e$
Now,
$f^{\prime \prime}(x)=\frac{-x-2 x(1-\log x)}{x^{4}}=\frac{-3 x-2 x \log x}{x^{4}}$
At $x=e:$
$f^{\prime \prime}(e)=\frac{-3 e-2 e \log e}{e^{4}}=\frac{-5}{e^{3}}<0$
So, $x=e$ is a point of local maximum.
Thus, the local maximum value is given by
$f(e)=\frac{\log e}{e}=\frac{1}{e}$