Question:
Write the maximum value of $\mathrm{f}(\mathrm{x})=x+\frac{1}{x}, x>0$.
Solution:
Given: $f(x)=x+\frac{1}{x}$
$\Rightarrow f^{\prime}(x)=1-\frac{1}{x^{2}}$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow 1-\frac{1}{x^{2}}=0$
$\Rightarrow x^{2}=1$
$\Rightarrow x=1,-1$
But $x<0$
$\Rightarrow x=-1$
Now,
$f^{\prime \prime}(x)=\frac{1}{x^{3}}$
At $x=-1:$
$f^{\prime \prime}(-1)=\frac{2}{(-1)^{3}}=-2<0$
So, $x=-1$ is a point of local maximum.
Thus, the local maximum value is given by
$f(-1)=-1+\frac{1}{-1}=-1-1=-2$