Question:
Write the maximum and minimum values of sin (sin x).
Solution:
We know :
$-1 \leq \sin x \leq 1$
Also, $\sin (-\theta)=-\sin \theta$
When the angle increases from 0 to $\frac{\pi}{2}$, the value of $\sin \theta$ also increases.
$\therefore$ Maximum value of $\sin [\sin (x)]=\sin (1)$
And, minimum value of $\sin [\sin (x)]=\sin (-1)=-\sin 1$