Write the first five terms of each of the following sequences whose nth terms are:
(a) $a_{n}=3 n+2$
(b) $a_{n}=\frac{n-3}{3}$
(c) $a_{n}=3^{n}$
(d) $a_{n}=\frac{3 n-2}{5}$
(e) $a_{n}=(-1)^{n} 2^{n}$
(f) $a_{n}=\frac{n(n-2)}{2}$
(g) an $=n^{2}-n+1$
(h) $a_{n}=2 n^{2}-3 n+1$
(i) $a_{n}=\frac{2 n-3}{6}$
Here, we are given the nth term for various sequences. We need to find the first five terms of the sequence.
(i) $a_{n}=3 n+2$
Here, the nth term is given by the above expression. So, to find the first term we use, we get,
$a_{1}=3(1)+2$
$=3+2$
$=5$
Similarly, we find the other four terms,
Second term (),
$a_{2}=3(2)+2$
$=6+2$
$=8$
Third term $(n=3)$,
$a_{3}=3(3)+2$
$=9+2$
$=11$
Fourth term $(n=4)$,
$a_{4}=3(4)+2$
$=12+2$
$=14$
Fifth term $(n=5)$,
$a_{5}=3(5)+2$
$=15+2$
$=17$
Therefore, the first five terms for the given sequence are $a_{1}=5, a_{2}=8, a_{3}=11, a_{4}=14, a_{5}=17$.
(ii) $a_{n}=\frac{n-2}{3}$
Here, the nth term is given by the above expression. So, to find the first term we use, , we get,
$a_{1}=\frac{(1)-2}{3}$
$=\frac{-1}{3}$
Similarly, we find the other four terms,
Second term (),
$a_{2}=\frac{(2)-2}{3}$
$=\frac{0}{3}$
$=0$
Third term,
$a_{3}=\frac{(3)-2}{3}$
$=\frac{1}{3}$
Fourth term,
$a_{4}=\frac{(4)-2}{3}$
$=\frac{2}{3}$
Fifth term $(n=5)$,
$a_{5}=\frac{(5)-2}{3}$
$=\frac{3}{3}$
$=1$
Therefore, the first five terms for the given sequence are $a_{1}=\frac{-1}{3}, a_{2}=0, a_{3}=\frac{1}{3}, a_{4}=\frac{2}{3}, a_{5}=1$.
(iii) $a_{n}=3^{n}$
Here, the nth term is given by the above expression. So, to find the first term we use, we get,
$a_{1}=3^{(1)}$
$=3$
Similarly, we find the other four terms,
Second term (),
$a_{2}=3^{(2)}$
$=(3)(3)$
$=9$
Third term $(n=3)$,
$a_{3}=3^{(3)}$
$=(3)(3)(3)$
$=27$
Fourth term,
$a_{4}=3^{(4)}$
$=(3)(3)(3)(3)$
$=81$
Fifth term $(n=5)$,
$a_{5}=3^{(5)}$
$=(3)(3)(3)(3)(3)$
$=243$
Therefore, the first five terms for the given sequence are $a_{1}=3, a_{2}=9, a_{3}=27, a_{4}=81, a_{5}=243$.
(iv) $a_{n}=\frac{3 n-2}{5}$
Here, the nth term is given by the above expression. So, to find the first term we use, , we get,
$a_{1}=\frac{3(1)-2}{5}$
$=\frac{1}{5}$
Similarly, we find the other four terms,
Second term $(n=2)$,
$a_{2}=\frac{3(2)-2}{5}$
$=\frac{6-2}{5}$
$=\frac{4}{5}$
Third term,
$a_{3}=\frac{3(3)-2}{5}$
$=\frac{9-2}{5}$
$=\frac{7}{5}$
Fourth term $(n=4)$,
$a_{4}=\frac{3(4)-2}{5}$
$=\frac{12-2}{5}$
$=\frac{10}{5}$
$=2$
Fifth term $(n=5)$,
$a_{5}=\frac{3(5)-2}{5}$
$=\frac{15-2}{5}$
$=\frac{13}{5}$
Therefore, the first five terms for the given sequence are $a_{1}=\frac{1}{5}, a_{2}=\frac{4}{5}, a_{3}=\frac{7}{5}, a_{4}=2, a_{5}=\frac{13}{5}$.
(v) $a_{n}=(-1)^{n} \cdot 2^{n}$
Here, the nth term is given by the above expression. So, to find the first term we use, we get,
$a_{1}=(-1)^{1} \cdot 2^{1}$
$=(-1) \cdot 2$
$=-2$
Similarly, we find the other four terms,
Second term $(n=2)$
$a_{2}=(-1)^{2} \cdot 2^{2}$
$=1.4$
$=4$
Third term $(n=3)$,
$a_{3}=(-1)^{3} \cdot 2^{3}$
$=(-1) .8$
$=-8$
Fourth term $(n=4)$,
$a_{4}=(-1)^{4} \cdot 2^{4}$
$=1.16$
$=16$
Fifth term $(n=5)$,
$a_{5}=(-1)^{5} \cdot 2^{5}$
$=(-1) .32$
$=-32$
Therefore, the first five terms of the given A.P are $a_{1}=-2, a_{2}=4, a_{3}=-8, a_{4}=16, a_{5}=-32$.
(vi) $a_{s}=\frac{n(n-2)}{2}$
Here, the nth term is given by the above expression. So, to find the first term we use , we get,
$a_{1}=\frac{1(1-2)}{2}$
$=\frac{-1}{2}$
Similarly, we find the other four terms,
Second term (),
$a_{2}=\frac{2(2-2)}{2}$
$=\frac{2(0)}{2}$
$=0$
Third term $(n=3)$,
$a_{3}=\frac{3(3-2)}{2}$
$=\frac{3(1)}{2}$
$=\frac{3}{2}$
Fourth term $(n=4)$,
$a_{4}=\frac{4(4-2)}{2}$
$=\frac{4(2)}{2}$
$=\frac{8}{2}$
$=4$
Fifth term $(n=5)$,
$a_{5}=\frac{5(5-2)}{2}$
$=\frac{5(3)}{2}$
$=\frac{15}{2}$
Therefore, the first five terms for the given sequence are $a_{1}=\frac{-1}{2}, a_{2}=0, a_{3}=\frac{3}{2}, a_{4}=4, a_{5}=\frac{15}{2}$.
(vii) $a_{n}=n^{2}-n+1$
Here, the nth term is given by the above expression. So, to find the first term we use, we get,
$a_{1}=(1)^{2}-(1)+1$
$=1-1+1$
$=1$
Similarly, we find the other four terms,
Second term (),
$a_{2}=(2)^{2}-(2)+1$
$=4-2+1$
$=3$
Third term $(n=3)$,
$a_{3}=(3)^{2}-(3)+1$
$=9-3+1$
$=13$
Fifth term $(n=5)$,
$a_{5}=(5)^{2}-(5)+1$
$=25-5+1$
$=21$
Therefore, the first five terms for the given sequence are $a_{1}=1, a_{2}=3, a_{3}=7, a_{4}=13, a_{5}=21$.
(viii) $a_{n}=2 n^{2}-3 n+1$
Here, the $n^{\text {th }}$ term is given by the above expression. So, to find the first term we use $n=1$, we get,
$a_{1}=2(1)^{2}-3(1)+1$
$=2(1)-3+1$
$=2-3+1$
$=0$
Similarly, we find the other four terms,
Second term (),
$a_{2}=2(2)^{2}-3(2)+1$
$=2(4)-6+1$
$=8-6+1$
$=3$
Third term $(n=3)$,
$a_{3}=2(3)^{2}-3(3)+1$
$=2(9)-9+1$
$=18-9+1$
$=10$
Fourth term $(n=4)$,
$=2(16)-12+1$
$=32-12+1$
$=21$
Fifth term $(n=5)$,
$a_{5}=2(5)^{2}-3(5)+1$
$=2(25)-15+1$
$=50-15+1$
$=36$
Therefore, the first five terms for the given sequence are $a_{1}=0, a_{2}=3, a_{3}=10, a_{4}=21, a_{5}=36$.
(ix) $a_{e}=\frac{2 n-3}{6}$
Here, the nth term is given by the above expression. So, to find the first term we use, we get,
$a_{1}=\frac{2(1)-3}{6}$
$=\frac{2-3}{6}$
$=\frac{-1}{6}$
Similarly, we find the other four terms,
Second term (),
$a_{2}=\frac{2(2)-3}{6}$
$=\frac{4-3}{6}$
$=\frac{1}{6}$
Third term $(n=3)$,
$a_{3}=\frac{2(3)-3}{6}$
$=\frac{6-3}{6}$
$=\frac{3}{6}$
$=\frac{1}{2}$
Fourth term $(n=4)$,
$a_{4}=\frac{2(4)-3}{6}$
$=\frac{8-3}{6}$
$=\frac{5}{6}$
Fifth term $(n=5)$,
$a_{5}=\frac{2(5)-3}{6}$
$=\frac{10-5}{6}$
$=\frac{7}{6}$
Therefore, the first five terms of the given A.P are
$a_{1}=\frac{-1}{6}, a_{2}=\frac{1}{6}, a_{3}=\frac{1}{2}, a_{4}=\frac{5}{6}, a_{5}=\frac{7}{6}$