Question:
Write the equation of the normal to the curve $y=\cos x$ at $(0,1)$.
Solution:
Given that $y=\cos x$
On differentiating both the sides w.r.t. $x$
$\frac{d y}{d x}=-\sin x$
Now,
Slope of tangent at $(0,1)=0$
Equation of normal:
$\left(\mathrm{y}-\mathrm{y}_{1}\right)=\frac{-1}{\text { Slope of tangent }}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\Rightarrow(\mathrm{y}-1)=\frac{-1}{0}(\mathrm{x}-0)$
$\Rightarrow \mathrm{x}=0$