Question:
Write the equation of the normal to the curve $y=x+\sin x \cos x$ at $x=\frac{\pi}{2}$.
Solution:
Given that the curve $y=x+\sin x \cos x$
Differentiating both the sides w.r.t. $x$,
$\frac{d y}{d x}=1+\cos ^{2} x-\sin ^{2} x$
Now,
Slope of the tangent $\frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}=\frac{\pi}{2}\right)=1+\cos ^{2} \frac{\pi}{2}-\sin ^{2} \frac{\pi}{2}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1-1+0=0$
When $x=\frac{\pi}{2}, y=\frac{\pi}{2}$
Equation of the normal:
$\left(\mathrm{y}-\mathrm{y}_{1}\right)=\frac{-1}{\text { Slope of tangent }}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\Rightarrow\left(y-\frac{\pi}{2}\right)=\frac{-1}{0}\left(x-\frac{\pi}{2}\right)$
$\Rightarrow 2 x=\pi$