Question:
Write the domain of the real function $f$ defined by $f(x)=\sqrt{25-x^{2}}$.
Solution:
We have,
$f(x)=\sqrt{25-x^{2}}$
The function is defined only when $25-x^{2} \geq 0$
$\Rightarrow x^{2}-25 \leq 0$
$\Rightarrow(x+5)(x-5) \leq 0$
$\Rightarrow x \in[-5,5]$
So, the domain of the given function is $[-5,5]$.