Question:
Write the domain and range of $f(x)=\sqrt{x-[x]}$.
Solution:
$f(x)=\sqrt{x-[x]}$
Since $f(x)$ is defined for all values of $\mathrm{x}, x \in R$.
Or $\operatorname{dom}(f(x))=R$
Since, $x-[x]=\{x\}$, which is the fractional part of any real number $x$,
$f(x)=\sqrt{\{x\}} \ldots \ldots(1)$
We know that
$0 \leq\{x\}<1$
$\Rightarrow \sqrt{0} \leq \sqrt{\{x\}}<\sqrt{1}$
$\Rightarrow 0 \leq f(x)<1 \quad\{$ from $(1)\}$
Thus, range of $f(x)$ is $[0,1)$.