Question:
Write the difference between maximum and minimum values of $\sin ^{-1} x$ for $x \in[-1,1]$.
Solution:
The maximum value of $\sin ^{-1} x$ in $x \in[-1,1]$ is at 1 .
So, the maximum value is
$\sin ^{-1}(1)$
$=\sin ^{-1}\left(\sin \frac{\pi}{2}\right)$
$=\frac{\pi}{2}$
Again, the minimum value is at −1.
Thus, the minimum value is
$\sin ^{-1}(-1)=-\sin ^{-1}(1)$
$=-\sin ^{-1}\left(\frac{\pi}{2}\right)$
$=-\frac{\pi}{2}$
So, the difference between the maximum and the minimum value is
$\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=\pi$