Question:
Write the correct alternative in the following:
If $y=e^{\tan x}$, then $\left(\cos ^{2} x\right) y_{2}=$
A. $(1-\sin 2 x) y_{1}$
B. $-(1+\sin 2 x) y_{1}$
C. $(1+\sin 2 x) y_{1}$
D. none of these
Solution:
Given:
$y=e^{\tan x}$
$\frac{d y}{d x}=e^{\tan x}(\sec x)^{2}$
$\frac{d^{2} y}{d x^{2}}=e^{\tan x}(\sec x)^{2}(\sec x)^{2}+e^{\tan x} \times 2 \sec x \times \tan x \times \sec x$
$=e^{\tan x}(\sec x)^{2}\left[(\sec x)^{2}+2 \tan x\right]$
$\left(\cos ^{2} x\right) y_{2}=e^{\tan x}\left[(\sec x)^{2}+2 \tan x\right]$
$=e^{\tan x}\left[\frac{1+2 \sin x \cos x}{(\cos x)^{2}}\right]$
$=e^{\tan x}(\sec x)^{2}[1+2 \sin x \cos x]$
$=e^{\tan x}(\sec x)^{2}[1+\sin 2 x]$
$=[1+\sin 2 \mathrm{x}] \mathrm{y}_{1}$