Write the correct alternative in the following:
If $x y-\log _{e} y=1$ satisfies the equation $x\left(y y_{2}+y_{1}^{2}\right)-y_{2}+\lambda y y_{1}=0$, then $\lambda=$
A. $-3$
B. 1
C. 3
D. none of these
Given:
$x y-\log _{e} y=1$
$x y=\log _{e} y+1$
Differentiate w.r.t. ' $x$ ' on both sides;
$\mathrm{y}+\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dx}}$
$\frac{d y}{d x}\left(\frac{1}{y}-x\right)=y$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}^{2}}{(1-\mathrm{xy})}$
$\left(\frac{d y}{d x}\right)^{2}=\left[\frac{y^{2}}{(1-x y)}\right]^{2}$
$=\frac{y^{4}}{(1-x y)^{2}}$
$\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{d}{d x}\left[\frac{y^{2}}{(1-x y)}\right]$
$=\frac{1}{(1-x y)^{2}}\left\{2 y \frac{d y}{d x}(1-x y)-y^{2}\left(-y+x \frac{d y}{d x}\right)\right\}$
$=\frac{1}{(1-x y)^{2}}\left\{2 y \frac{d y}{d x}(1-x y)-y^{2}\left(-y+x \frac{d y}{d x}\right)\right\}$
$=\frac{1}{(1-x y)^{2}}\left\{2 y \frac{d y}{d x} \frac{y^{2}}{\frac{d y}{d x}}+y^{3}+x y^{2} \frac{d y}{d x}\right\}$
$=\frac{1}{(1-x y)^{2}}\left\{2 y^{3}+y^{3}+x y^{2} \frac{d y}{d x}\right\}$
$=\frac{1}{(1-x y)^{2}}\left\{3 y^{3}+x y^{2} \frac{d y}{d x}\right\}$
$=\frac{y^{2}}{(1-x y)^{2}}\left\{3 y+x \frac{d y}{d x}\right\}$
$y \frac{d^{2} y}{d y^{2}}=\frac{y^{3}}{(1-x y)^{2}}\left\{3 y+x \frac{d y}{d x}\right\}$
$y \frac{d^{2} y}{d y^{2}}+\left(\frac{d y}{d x}\right)^{2}=\frac{y^{3}}{(1-x y)^{2}}\left\{3 y+x \frac{d y}{d x}\right\}+\frac{y^{4}}{(1-x y)^{2}}$
$=\frac{y^{3}}{(1-x y)^{2}}\left\{3 y+x \frac{d y}{d x}+y\right\}$
$=\frac{y^{3}}{(1-x y)^{2}}\left\{4 y+x \frac{d y}{d x}\right\}$
$x\left[y \frac{d^{2} y}{d y^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]=\frac{y^{3} x}{(1-x y)^{2}}\left\{4 y+x \frac{d y}{d x}\right\}$
$x\left[y \frac{d^{2} y}{d y^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]-\frac{d^{2} y}{d y^{2}}=\frac{y^{3} x}{(1-x y)^{2}}\left\{4 y+x \frac{d y}{d x}\right\}-\frac{y^{2}}{(1-x y)^{2}}\left\{3 y+x \frac{d y}{d x}\right\}$
$=\frac{y^{2}}{(1-x y)^{2}}\left\{x y\left(4 y+x \frac{d y}{d x}\right)-3 y-x \frac{d y}{d x}\right\}$
$=\frac{y^{2}}{(1-x y)^{2}}\left\{4 x y^{2}+x^{2} y \frac{d y}{d x}-3 y-x \frac{d y}{d x}\right\}$
$=\frac{y^{2}}{(1-x y)^{2}}\left\{y(4 x y-3)+x \frac{d y}{d x}(x y-1)\right\}$
$=\frac{y^{2}}{(1-x y)^{2}}\left\{y(x y+3 x y-3)-x \frac{d y}{d x}(1-x y)\right\}$
$=\frac{y^{2}}{(1-x y)^{2}}\left\{y(x y-3(1-x y))-x \frac{d y}{d x} \frac{y^{2}}{d y}\right\}$
$=\frac{y^{2}}{(1-x y)^{2}}\left\{y\left(x y-3 \frac{y^{2}}{\frac{d y}{d x}}\right)-x y^{2}\right\}$
$=\frac{y^{2}}{(1-x y)^{2}}\left\{x y^{2}-3 \frac{y^{3}}{\frac{d y}{d x}}-x y^{2}\right\}$
$=-\frac{y^{2}}{(1-x y)^{2}}\left\{3 \frac{y^{3}}{\frac{d y}{d x}}\right\}$
Since $x\left[y \frac{d^{2} y}{d y^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]-\frac{d^{2} y}{d y^{2}}+\lambda y \frac{d y}{d x}=0$
So, $x\left[y \frac{d^{2} y}{d y^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]-\frac{d^{2} y}{d y^{2}}=-\lambda y \frac{d y}{d x}$
$-\lambda y \frac{d y}{d x}=-\frac{y^{2}}{(1-x y)^{2}}\left\{3 \frac{y^{3}}{\frac{d y}{d x}}\right\}$
$-\lambda y \frac{y^{2}}{(1-x y)}=-\frac{y^{2}}{(1-x y)^{2}}\left\{3 \frac{y^{3}}{\frac{d y}{d x}}\right\}$
$\lambda y=\frac{1}{(1-x y)}\left\{3 \frac{y^{3}}{\frac{d y}{d x}}\right\}$
$\lambda=\frac{3 y^{2}}{(1-x y) \frac{d y}{d x}}$
$\lambda=\frac{3 \frac{d y}{d x}}{\frac{d y}{d x}}$
$\lambda=3$