Question:
Write the coordinates of the point at which the tangent to the curve $y=2 x^{2}-x+1$ is parallel to the line $y=$ $3 x+9$
Solution:
Let $(a, b)$ be the required coordinate.
Given that the tangent to the curve $y=2 x^{2}-x+1$ is parallel to the line $y=3 x+9$.
Slope of the line $=3$
$\because$ the point lies on the curve
$\Rightarrow \mathrm{b}=2 \mathrm{a}^{2}-\mathrm{a}+1 \ldots$ (1)
Now, $y=2 x^{2}-x+1$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=4 \mathrm{x}-1$
Now value of slope at $(a, b)$
$\Rightarrow \frac{d y}{d x}=4 a-1$
Given that Slope of tangent $=$ Slope of line
$\Rightarrow 4 a-1=3$
$\Rightarrow 4 a=4$
$\Rightarrow a=1$
From (1),
$b=2-1+1$
$\Rightarrow b=2$