Question:
Write the common difference of an A.P. the sum of whose first $n$ terms is $\frac{p}{2} n^{2}+Q n$.
Solution:
Sum of the first $n$ terms of an A.P. $=\frac{p}{2} n^{2}+Q n$
Sum of one term of an A.P. $=S_{1}$
$\Rightarrow \frac{p}{2}(1)^{2}+Q(1)$
$\Rightarrow \frac{p}{2}+Q$
Sum of two terms of an A.P. $=S_{2}$
$\Rightarrow \frac{p}{2}(2)^{2}+Q(2)$
$\Rightarrow 2 p+2 Q$
Now, we have:
$a_{1}+a_{2}=S_{2}$
$\Rightarrow \frac{p}{2}+Q+a_{2}=2 p+2 Q$
$\Rightarrow a_{2}=Q+\frac{3}{2} p$
Common difference:
$d=a_{2}-a_{1}$
$=\left(Q+\frac{3}{2} p\right)-\left(Q+\frac{p}{2}\right)$
$=p$