Write four solutions for each of the following equations: <br/><br/>(i) $2 x+y=7$ <br/><br/>(ii) $\pi x+y=9$ <br/><br/>(iii) $x=4 y$
Solution:
(i) $2 x+y=7$
For $x=0$,
$2(0)+y=7$
$\Rightarrow y=7$
Therefore, $(0,7)$ is a solution of this equation.
For $x=1$,
$2(1)+y=7$
$\Rightarrow y=5$
Therefore, $(1,5)$ is a solution of this equation.
For $x=-1$
$2(-1)+y=7$
$\Rightarrow y=9$
Therefore, $(-1,9)$ is a solution of this equation.
For $x=2$,
$2(2)+y=7$
$\Rightarrow y=3$
Therefore, $(2,3)$ is a solution of this equation.
(ii) $\pi x+y=9$
For $x=0$,
$\pi(0)+y=9$
$\Rightarrow y=9$
Therefore, $(0,9)$ is a solution of this equation.
For $x=1$,
$\pi(1)+y=9$
$\Rightarrow y=9-\pi$
Therefore, $(1,9-\pi)$ is a solution of this equation.
For $x=2$,
$\pi(2)+y=9$
$\Rightarrow y=9-2 \pi$
Therefore, $(2,9-2 \pi)$ is a solution of this equation.
For $x=-1$,
$\pi(-1)+y=9$
$\Rightarrow y=9+\pi$
$\Rightarrow(-1,9+\pi)$ is a solution of this equation.
(iii) $x=4 y$
For $x=0$,
$0=4 y$
$\Rightarrow y=0$
Therefore, $(0,0)$ is a solution of this equation.
For $y=1$,
$x=4(1)=4$
Therefore, $(4,1)$ is a solution of this equation.
For $y=-1$
$x=4(-1)$
$\Rightarrow x=-4$
Therefore, $(-4,-1)$ is a solution of this equation.
For $x=2$,
$2=4 y$
$\Rightarrow y=\frac{2}{4}=\frac{1}{2}$
Therefore, $\left(2, \frac{1}{2}\right)$ is a solution of this equation.
(i) $2 x+y=7$
For $x=0$,
$2(0)+y=7$
$\Rightarrow y=7$
Therefore, $(0,7)$ is a solution of this equation.
For $x=1$,
$2(1)+y=7$
$\Rightarrow y=5$
Therefore, $(1,5)$ is a solution of this equation.
For $x=-1$
$2(-1)+y=7$
$\Rightarrow y=9$
Therefore, $(-1,9)$ is a solution of this equation.
For $x=2$,
$2(2)+y=7$
$\Rightarrow y=3$
Therefore, $(2,3)$ is a solution of this equation.
(ii) $\pi x+y=9$
For $x=0$,
$\pi(0)+y=9$
$\Rightarrow y=9$
Therefore, $(0,9)$ is a solution of this equation.
For $x=1$,
$\pi(1)+y=9$
$\Rightarrow y=9-\pi$
Therefore, $(1,9-\pi)$ is a solution of this equation.
For $x=2$,
$\pi(2)+y=9$
$\Rightarrow y=9-2 \pi$
Therefore, $(2,9-2 \pi)$ is a solution of this equation.
For $x=-1$,
$\pi(-1)+y=9$
$\Rightarrow y=9+\pi$
$\Rightarrow(-1,9+\pi)$ is a solution of this equation.
(iii) $x=4 y$
For $x=0$,
$0=4 y$
$\Rightarrow y=0$
Therefore, $(0,0)$ is a solution of this equation.
For $y=1$,
$x=4(1)=4$
Therefore, $(4,1)$ is a solution of this equation.
For $y=-1$
$x=4(-1)$
$\Rightarrow x=-4$
Therefore, $(-4,-1)$ is a solution of this equation.
For $x=2$,
$2=4 y$
$\Rightarrow y=\frac{2}{4}=\frac{1}{2}$
Therefore, $\left(2, \frac{1}{2}\right)$ is a solution of this equation.