Write down the decimal expansions of the following rational numbers by writing their denominators in the form
Write down the decimal expansions of the following rational numbers by writing their denominators in the form 2m × 5n, where, m, n are non-negative integers.
(i) $\frac{3}{8}$
(ii) $\frac{13}{125}$
(iii) $\frac{7}{80}$
(iv) $\frac{14588}{625}$
(v) $\frac{129}{2^{2} \times 5^{7}}$ [NCERT]
(i) The given number is $\frac{3}{8}$.
Clearly, $8=2^{3}$ is of the form $2^{m} \times 5^{n}$, where $m=3$ and $n=0$.
So, the given number has terminating decimal expansion.
$\therefore \frac{3}{8}=\frac{3 \times 5^{3}}{2^{3} \times 5^{3}}=\frac{3 \times 125}{(2 \times 5)^{3}}=\frac{375}{(10)^{3}}=\frac{375}{1000}=0.375$
(ii) The given number is $\frac{13}{125}$.
Clearly, $125=5^{3}$ is of the form $2^{m} \times 5^{n}$, where $m=0$ and $n=$
So, the given number has terminating decimal expansion.
$\therefore \frac{13}{125}=\frac{13 \times 2^{3}}{2^{3} \times 5^{3}}=\frac{13 \times 8}{(2 \times 5)^{3}}=\frac{104}{(10)^{3}}=\frac{104}{1000}=0.104$
(iii) The given number is $\frac{7}{80}$.
Clearly, $80=2^{4} \times 5$ is of the form $2^{m} \times 5^{n}$, where $m=4$ and $n=1$.
So, the given number has terminating decimal expansion.
$\therefore \frac{7}{80}=\frac{7 \times 5^{3}}{2^{4} \times 5 \times 5^{3}}=\frac{7 \times 125}{(2 \times 5)^{4}}=\frac{875}{(10)^{4}}=\frac{875}{10000}=0.0875$
(iv) The given number is $\frac{14588}{625}$.
Clearly, $625=5^{4}$ is of the form $2^{m} \times 5^{n}$, where $m=0$ and $n=4$.
So, the given number has terminating decimal expansion.
$\therefore \frac{14588}{625}=\frac{14588 \times 2^{4}}{2^{4} \times 5^{4}}=\frac{14588 \times 16}{(2 \times 5)^{4}}=\frac{233408}{(10)^{4}}=\frac{233408}{10000}=23.3408$
(v) The given number is $\frac{129}{2^{2} \times 5^{7}}$.
Clearly, $2^{2} \times 5^{7}$ is of the form $2^{m} \times 5^{n}$, where $m=2$ and $n=7$.
So, the given number has terminating decimal expansion.
$\therefore \frac{129}{2^{2} \times 5^{7}}=\frac{129 \times 2^{5}}{2^{2} \times 5^{7} \times 2^{5}}=\frac{129 \times 32}{(2 \times 5)^{7}}=\frac{4182}{(10)^{7}}=\frac{4182}{10000000}=0.0004182$