Question.
Write all the other trigonometric ratios of $\angle \mathrm{A}$ in terms of $\sec \mathrm{A}$.
Write all the other trigonometric ratios of $\angle \mathrm{A}$ in terms of $\sec \mathrm{A}$.
Solution:
(i) $\sin A=\sqrt{1-\cos ^{2} A}$
$=\sqrt{1-\frac{1}{\sec ^{2} A}}=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}$
(ii) $\cos A=\frac{1}{\sec A}$
(iii) $\tan A=\sqrt{\sec ^{2} \mathbf{A}-\mathbf{1}}$
(iv) $\cot A=\frac{1}{\tan A}=\frac{1}{\sqrt{\sec ^{2} A-1}}$
(v) $\operatorname{cosec} A=\frac{1}{\sin A}=\frac{\sec A}{\sqrt{\sec ^{2} A-1}}$
(i) $\sin A=\sqrt{1-\cos ^{2} A}$
$=\sqrt{1-\frac{1}{\sec ^{2} A}}=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}$
(ii) $\cos A=\frac{1}{\sec A}$
(iii) $\tan A=\sqrt{\sec ^{2} \mathbf{A}-\mathbf{1}}$
(iv) $\cot A=\frac{1}{\tan A}=\frac{1}{\sqrt{\sec ^{2} A-1}}$
(v) $\operatorname{cosec} A=\frac{1}{\sin A}=\frac{\sec A}{\sqrt{\sec ^{2} A-1}}$