Question:
Write a value of $\int \frac{\cos x}{\sin x \log \sin x} d x$
Solution:
Let $\log (\sin x)=t$
Differentiating both sides with respect to $x$
$\frac{d t}{d x}=\frac{\cos x}{\sin x} \Rightarrow d t=\frac{\cos x}{\sin x} d x$
$y=\int \frac{1}{t} d t$
Use formula $\int \frac{1}{t} d t=\log t$
$y=\log t+c$
Again, put $t=\log (\sin x)$
$y=\log (\log (\sin x))+c$