Question: Write a value of $\int \sin ^{3} x \cos x d x$.
Solution:
let $\sin x=t$
Differentiating on both sides we get,
$\cos x d x=d t$
Substituting above equation in $\int \sin ^{3} x \cos x d x$ we get,
$=\int t^{3} d t$
$=\frac{t^{4}}{4}+c$
$=\frac{\sin ^{4} x}{4}+c$