Question: Write a value of $\int a^{x} e^{x} d x$
Solution:
We know that a and e are constant so, $a^{x} e^{x}=(a e)^{x}$
$y=\int(a e)^{x} d x$
Use formula $\int c^{x}=\frac{c^{x}}{\log c}$ where $c$ is constant
$y=\frac{(a e)^{x}}{\log (a e)}+c$
$y=\frac{a^{x} e^{x}}{\log a+1}+c$