Question:
Write a pythagorean triplet whose smallest member is
(i) 6
(ii) 14
(iii) 16
(iv) 20
Solution:
For every number $m>1$, the Pythagorean triplet is $\left(2 m, m^{2}-1, m^{2}+1\right)$.
Using the above result:
(i) $2 m=6$
$m=3, m^{2}=9$
$m^{2}-1=9-1=8$
$m^{2}+1=9+1=10$
Thus, the Pythagorean triplet is $[6,8,10]$
(ii) $2 m=14$
$m=7, m^{2}=49$
$m^{2}-1=49-1=48$
$m^{2}+1=49+1=50$
Thus, the Pythagorean triplet is $[14,48,50]$.
(iii) $2 m=16$
$m=8, m^{2}=64$
$m^{2}-1=64-1=63$
$m^{2}+1=64+1=65$
Thus, the Pythagorean triplet is: $[16,63,65]$
(iv) $2 m=20$
$m=10, m^{2}=100$
$m^{2}-1=100-1=99$
$m^{2}+1=100+1=101$
Thus, the Pythagorean triplet is $[20,99,101]$.