Question:
Write 2i in polar form.
Solution:
Let, $z=2 i$
Let $0=r \cos \theta$ and $2=r \sin \theta$
By squaring and adding, we get
$(0)^{2}+(2)^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}$
$\Rightarrow 0+4=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\Rightarrow 4=r^{2}$
$\Rightarrow r=2$
$\therefore \cos \theta=0$ and $\sin \theta=1$
Since, θ lies in first quadrant, we have
$\theta=\frac{\pi}{2}$
Thus, the required polar form is $2\left(\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right)$