Write $(25)^{3}$ in polar form.
$\left(i^{25}\right)^{3}=i^{75}$
$=i^{4 \times 18+3}$
$=\left(i^{4}\right)^{18} \cdot i^{3}$
$=i^{3} \quad\left[\because i^{4}=1\right]$
$=-i \quad\left[\because i^{3}=-i\right]$
Let $z=0-i$
Then, $|z|=\sqrt{0^{2}+(-1)^{2}}=1$
Let $\theta$ be the argument of $z$ and $\alpha$ be the acute angle given by $\tan \alpha=\frac{|\operatorname{Im}(z)|}{|\operatorname{Re}(z)|}$.
Then,
$\tan \alpha=\frac{1}{0}=\infty$
$\Rightarrow \alpha=\frac{\pi}{2}$
Clearly, $z$ lies in fourth quadrant. So, $\arg (z)=-\alpha=-\frac{\pi}{2}$.
$\therefore$ the polar form of $z$ is $|z|(\cos \theta+i \sin \theta)=\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)$.
Thus, the polar form of $\left(i^{25}\right)^{3}$ is $\cos \left(\frac{\pi}{2}\right)-i \sin \left(\frac{\pi}{2}\right)$.