Question:
Write 1 − i in polar form.
Solution:
$z=1-i$
$r=|z|$
$=\sqrt{1+1}$
$=\sqrt{2}$
Let $\tan \alpha=\left|\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right|$
$\therefore \tan \alpha=\left|\frac{-1}{1}\right|$
$=\frac{\pi}{4}$
$\Rightarrow \alpha=\frac{\pi}{4}$
Since point $(1,-1)$ lies in the fourth quadrant, the argument of $z$ is given by
$\theta=-\alpha=-\frac{\pi}{4}$
Polar form $=r(\cos \theta+i \sin \theta)$
$=\sqrt{2}\left\{\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right\}$
$=\sqrt{2}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)$